Physical Description of the Single-Mode and Multimode Fiber Channels

René-Jean Essiambre
Bell Labs, Holmdel, New Jersey, U.S.A., 07733

Communication Theory Workshop (CTW)
May 17, 2016
Outline

1. Introduction
2. Single-mode fiber (SMF)
3. Nonlinear Shannon limit for SMF
4. Space-division multiplexing (SDM) fibers
5. MIMO in fiber-optic systems
6. Outlook
> 99% of long-distance data traffic goes through optical fibers

What is the theoretical capacity of optical fibers?

Challenge comes from that an optical fiber is a nonlinear medium
There has been an increase by more than 12 orders of magnitude in bandwidth for wired transmission.
What Does It Take to Connect the World

- Humans on Earth, \(N_{\text{humans}} \sim 10^{10} \)
- Communication rate \(R_{\text{bit}} \sim 1 \text{ Gbit/s} \)
- The total data rate needed:
 \[
 R_{\text{total}} \sim N_{\text{humans}} R_{b} = 10^{10} \times 10^{9} = 10^{19} \text{ bit/s}
 \]
 or

 100 billions times a typical home data rate (100 Mbit/s)

Requires large bandwidth channel and spatial confinement
Optical Fiber Transmitter and Receiver

Transmitter

Modulation and Constellation

\[
\begin{align*}
E_y(z, t) & \\
E_x(z, t) & \\
E_x(z, t) & \\
E_y(z, t) & \\
\end{align*}
\]

Sampling

1 bit

or

4 bits

\[
\begin{align*}
\text{Re}\{E_x\} & \quad \text{Im}\{E_x\} \\
0 & \quad \text{Time} \\
\end{align*}
\]

Optical fiber is well suited for ultra-high capacity transport in confined spatial dimensions

Receiver

Coherent receiver

\[
\begin{align*}
E_y(z, t) \\
E_x(z, t) \\
\end{align*}
\]

4 real fields in the form of electrical current for digital signal processing
Three Main Physical Phenomena Affecting Fiber Transmission

- Kerr fiber nonlinearities
- Fiber dispersion
- Noise

These effects occur simultaneously with an optical fiber
Optical Fiber Bandwidth

Fiber loss and signal frequencies

Loss over transoceanic distances

- Fiber loss through the Atlantic Ocean
 \[0.16 \text{ dB/km} \times 6000 \text{ km} \sim 960 \text{ dB}\]

Optical amplifiers are required for long-distance fiber transmission
Optical Amplification in a Optical Fiber Transmission Line

A transmission line generates a fixed spectral density of the noise, independently of signal power.

- Optical amplifiers are inserted periodically.
- Amplification adds distributed noise.
- Signal is loaded with noise when arriving to destination.
Fiber Chromatic Dispersion

- Chromatic dispersion equation:
 \[
 \frac{\partial E}{\partial z} + \frac{i}{2} \beta_2 \frac{\partial^2 E}{\partial t^2} = 0
 \]

- It can be solved in the spectral domain:
 \[
 E(t) = \frac{1}{\sqrt{2\pi}} \int \tilde{E}(\omega) e^{i\omega t} d\omega
 \]
 \[
 \frac{d\tilde{E}(\omega)}{dz} = \frac{i}{2} \beta_2 \omega^2 \tilde{E}(\omega)
 \]
 \[
 \tilde{E}(z, \omega) = \tilde{E}(0, \omega) \exp\left(\frac{i \beta_2 \omega^2 z}{2}\right)
 \]

Chromatic dispersion is an all-pass filter
The Optical Kerr Effect (or AC Kerr Effect)

• The light electromagnetic field distorts the electronic cloud

Electronic cloud distortion

Low power

High power

The signal phase is increasingly distorted by increasing signal power

John Kerr (1824-1907)

First paper on the "Kerr effect" (1875)
Nonlinear Crosstalk in Optical Fibers

- Signal distortions occur without spectral overlap

The nonlinear response of the glass is the main source of interference between WDM channels
Consequences of Routing in Optical Networks

- Different origins and destinations for different WDM channels
- WDM channels co-propagate over only a portion of the optical path

Joint processing of WDM channels not possible in optically-routed networks
Nonlinear Propagation in Optical Fibers (Single Polarization)

- One wants to solve the evolution of field $E(z, t)$ with distance:

\[
\frac{\partial E(z, t)}{\partial z} + \frac{\gamma}{2} \beta_2 \frac{\partial^2 E(z, t)}{\partial t^2} - \nu \gamma |E(z, t)|^2 E(z, t) = \nu N(z, t)
\]

- Need to solve the stochastic nonlinear Schrödinger equation (SNSE):

- In the absence of nonlinearities \rightarrow capacity of the AWGN channel
- At high powers, the nonlinear term dominates

No exact general analytical solution to the SNSE exists

AWGN: Additive white Gaussian noise
Calculation of Optical Fiber Capacity Estimate

- Numerical solution of the SNSE to capture all nonlinear effects
- Optimization of:
 1. Optical amplification (distributed)
 2. Digital signal processing (digital back-propagation)
- Ring constellations

- Fit a probability density functions (PDFs) to clouds
- Calculate mutual information from PDFs

It leads to a nonlinear capacity limit estimate
Nonlinear Shannon Limit Estimate (Single Polarization)

500 km of standard single-mode fiber (SSMF)

*SNR: signal average power in the fiber divided by the AWGN power per symbol

Experimentally demonstrated spectral efficiencies have leveled off to ~60% of maximum spectral efficiency since 2012
Nonlinear Shannon Limit Formula

An analytical formula for the capacity per unit of bandwidth C:

$$C = \log_2 \left(1 + \left[\frac{n_{sp} \hbar \omega_0 \alpha L R_s}{P_0} + 4 \frac{\gamma^2 P^2 L}{R_s^2 |\beta_2|} \right]^{-1} \right)$$

where $P = \left[\sum_{n=N_{\text{left}}(n \neq 0)}^{N_{\text{right}}} \frac{\kappa}{2\pi |\Delta f_n|} \right]^{1/2} P_0$

Location of the WDM channel in the spectrum

Capacity formula fits reasonably well current numerical capacity limits
Nonlinear Propagation in Optical Fibers (Dual Polarization)

- Nonlinear propagation when two polarizations, $E_x(z,t)$ and $E_y(z,t)$ co-propagate

Cross-polarization nonlinearity
(nonlinear crosstalk)

\[
\frac{\partial E_x}{\partial z} + \frac{i}{2} \beta_2 \frac{\partial^2 E_x}{\partial t^2} - \frac{i}{9} \gamma (|E_x|^2 + |E_y|^2) E_x = i N_x(z,t)\\
\frac{\partial E_y}{\partial z} + \frac{i}{2} \beta_2 \frac{\partial^2 E_y}{\partial t^2} - \frac{i}{9} \gamma (|E_y|^2 + |E_x|^2) E_y = i N_y(z,t)
\]

Nonlinear coupling between polarizations impacts transmission
Nonlinear Shannon Limit Estimate for Polarization-Division Multiplexing (PDM)

500 km of standard single-mode fiber (SSMF)

Transmitting two polarizations nearly doubles fiber capacity but not quite
A Single Fiber Strand Can Support Multiple Spatial Modes

Fiber cross-sections

Single-mode fiber
- 1 spatial mode x 2 pol.
 = 2 modes

Few-mode fiber
- 3 spatial modes x 2 polarizations
 = 6 modes

One can design different optical fibers (“engineer the channel”)
Single Fiber Strands Supporting Multiple Spatial Modes

Fiber cross-sections

- Single-mode fiber
- Multimode fiber
 - Few-mode
 - Commercial
- Multicore fibers
 - 3-core
 - 19-core
- Hollow-core fibers
 - Bandgap fiber
 - Kagomé

• These fibers enable space-division multiplexing (SDM) in fibers
• Most require multiple-input multiple output (MIMO) processing
• Capacity per fiber strand can increase dramatically

Can these advanced technologies reduce the cost per bit transported?
Modelization of Propagation Effects in SDM Fibers

- A space-division multiplexing (SDM) fiber can be viewed as:

 - The fiber segments model propagation without linear coupling
 - The mode-dependent elements (MDEs) introduce linear mode mixing (coupling) and mode-dependent effects

Linear coupling arises from “imperfect” fibers and lead to the need for MIMO processing
MIMO in Fiber Channel

In single-mode fibers:

- In single-mode fibers: 2x2 MIMO is done since 2005
- Up to about 20 symbols need to be processed simultaneously
- Current speeds are
 a. 1 Tb/s (offline post-processing)
 b. 400 Gb/s (real-time)

In space-division multiplexed (SDM) fibers:

- Up to 12x12 MIMO has been demonstrated
- Up to 1000 symbols need to be processed simultaneously
- Current speeds are a few Tb/s (offline post-processing)

Mode-dependent loss/gain and nonlinear effects degrade the efficiency of MIMO
Schematic of Coherent MIMO-based Coherent Crosstalk Suppression for Space-Division Multiplexing (SDM)

- All guided modes of the SDM fiber are selectively launched
- All guided modes are linearly coupled during propagation in the SDM fiber
- All guided modes are simultaneously detected with coherent receivers
- Multiple-input multiple-output (MIMO) digital signal processing decouples the received signals to recover the transmitted signal

Crosstalk from spatial multiplexing can be nearly completely removed by MIMO digital signal processing

Adapted from Morioka et al., IEEE Commun. Mag., pp. 531-542 (2012)
6 x 6 coherent MIMO experiment
Space-division multiplexing has already exceeded the nonlinear Shannon limit.
Summary and Outlook

- **Nonlinear Shannon capacity limit has been estimated**
 \[\approx 100 \, \text{Tb/s over 1000 km} \Rightarrow 100,000 \text{ fibers for } 10^{19} \text{ bit/s} \]

- **Space-division multiplexing is a promising technology**
 to further increase capacity per fiber strand

- **In the absence of mode-dependent loss or gain, MIMO**
 is about finding a unitary matrix

The “fiber channel” is either rather simple or exceedingly complex depending on the propagation effects included.
Acknowledgement*

- Andy Chraplyvy
- Nicolas Fontaine
- Gerard J. Foschini
- Alan Gnauck
- Bernhard Goebel
- James P. Gordon
- Herwig Kogelnik
- Gerhard Kramer
- Frank Kschischang
- Maurizio Magarini
- Sebastian Randel
- Roland Ryf
- Bob Tkach
- Antonia Tulino
- Peter Winzer

and many others ...

* by alphabetic order