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>  99% of long-distance data traffic 
goes through optical fibers

What is the theoretical capacity 
of optical fibers?

Challenge comes from that an 
optical fiber is a nonlinear medium 
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Wired Communication and the Electromagnetic Spectrum

< COPYRIGHT © 2016 Nokia. ALL RIGHTS RESERVED. >

There has been an increase by more than 12 orders 
of magnitude in bandwidth for wired transmission 
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• Humans on Earth, Nhumans ~ 1010

• Communication rate Rbit ~ 1 Gbit/s
• The total data rate needed:

Rtotal ~  Nhumans Rb

= 1010 x 109 = 1019 bit/s

< COPYRIGHT © 2016 Nokia. ALL RIGHTS RESERVED. >

What Does It Take to Connect the World

Requires large bandwidth channel 
and spatial confinement

or

100  billions times a typical 
home data rate (100 Mbit/s)
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Optical Fiber Transmitter and Receiver 

Optical fiber is well suited for ultra-high capacity 
transport in confined spatial dimensions 
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Three Main Physical Phenomena Affecting Fiber 
Transmission

Kerr fiber
nonlinearities

NoiseFiber dispersion

These effects occur simultaneously
with an optical fiber
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Optical Fiber Bandwidth

Loss over transoceanic distances

Optical amplifiers are required for long-distance 
fiber transmission
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Fiber loss and signal frequencies

• Fiber loss through the Atlantic Ocean
0.16 dB/km x 6000 km ~ 960dB

~ 100 GHz

Wavelength-division multiplexed
(WDM) channels

6000 km

Pout = 10-96 WPin = 1 W
Optical fiber~ 10 THz
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Optical Amplification in a Optical Fiber Transmission Line

A transmission line generates a fixed spectral density of 
the noise, independently of signal power

• Optical amplifiers are inserted periodically

• Amplification adds distributed noise

• Signal is loaded with noise when arriving to destination

Optical amplifier
 noise

Transmission fiber

. . . . . .

Length ~ 50 to 100 km Gain ~ 10 to 30 dB
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Fiber Chromatic Dispersion

Chromatic dispersion is an all-pass filter 

• Chromatic dispersion equation:

• It can be solved in the spectral domain:

Pulse

+ dispersion
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Time
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The Optical Kerr Effect (or AC Kerr Effect)

The signal phase is increasingly distorted 
by increasing signal power

• The light electromagnetic field 
distorts the electronic cloud

+ +

Electronic cloud distortion

Low power High power

First paper on the 
“Kerr effect” (1875)

John Kerr
(1824-1907)
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Nonlinear Crosstalk in Optical Fibers

The nonlinear response of the glass is the main 
source of interference between WDM channels
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• Signal distortions occur without spectral overlap
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Consequences of Routing in Optical Networks 

Joint processing of WDM channels not possible in 
optically-routed networks

• Different origins and destinations for different WDM channels 
• WDM channels co-propagate over only a portion of the optical path

 Optical filtering and 
routing

WDM channels

Frequency

1000’s of km
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Nonlinear Propagation in Optical Fibers (Single Polarization)

No exact general analytical solution to the SNSE exists

Input OutputFiber propagation with amplifier noise

• One wants to solve the evolution of field            with distance:

AWGN: Additive white Gaussian noise

• Need to solve the stochastic nonlinear Schrödinger equation (SNSE):

(AWGN)(include all WDM 
channels)

(all-pass filter)

NoiseFiber Kerr
nonlinearities

Fiber dispersion

• At high powers, the nonlinear term dominates
• In the absence of nonlinearities  capacity of the AWGN channel 
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Calculation of Optical Fiber Capacity Estimate

It leads to a nonlinear capacity limit estimate

• Numerical solution of the SNSE to capture all nonlinear effects
• Optimization of: 

1. Optical amplification (distributed)
2. Digital signal processing (digital back-propagation) 

• Fit a probability density functions (PDFs) to clouds
• Calculate mutual information from PDFs 

• Ring constellations 
Input constellation
(data realization)

Output constellation
(after phase removal) 
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Nonlinear Shannon Limit Estimate (Single Polarization)

Experimentally demonstrated spectral efficiencies have leveled 
off to ~60% of maximum spectral efficiency since 2012

*SNR: signal average power in the fiber divided by the AWGN power per symbol  

Nonlinear Shannon 
limit of spectral 
efficiency 
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Nonlinear Shannon Limit Formula

An analytical formula for the capacity per unit of bandwidth C: 

Location of the 
WDM channel in 

the spectrum
Capacity formula fits reasonably well current 

numerical capacity limits
< COPYRIGHT © 2016 Nokia. ALL RIGHTS RESERVED. >
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Nonlinear Propagation in Optical Fibers (Dual Polarization)

Nonlinear coupling between polarizations 
impacts transmission

• Nonlinear propagation when two polarizations,      
and              co-propagate

Cross-polarization nonlinearity
(nonlinear crosstalk)
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Nonlinear Shannon Limit Estimate for Polarization-Division 
Multiplexing (PDM)

Transmitting two polarizations nearly doubles fiber 
capacity but not quite

500 km of standard single-mode fiber (SSMF)
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Record
experiments

2X1.9X
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Single-mode fiber

< COPYRIGHT © 2016 Nokia. ALL RIGHTS RESERVED. >

A Single Fiber Strand Can Support Multiple Spatial Modes

One can design different optical fibers
(“engineer the channel”)

Few-mode fiber

Fiber cross-sections

1 spatial mode x 2 pol. 
= 2 modes

3 spatial modes x 2 polarizations
= 6 modes
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Single Fiber Strands Supporting Multiple Spatial Modes

Can these advanced technologies reduce the 
cost per bit transported?

Fiber cross-sections
Single-
mode
fiber

Multimode fiber

CommercialFew-mode

Multicore fibers

19 -core3-core
Air

Holes

Hollow-core fibers

KagoméBandgap fiber

• These fibers enables space-division multiplexing (SDM) in fibers

• Most require multiple-input multiple output (MIMO) processing
• Capacity per fiber strand can increase dramatically
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Modelization of Propagation Effects in SDM Fibers
• A space-division multiplexing (SDM) fiber can be viewed as: 

x

y
z

• The fiber segments model propagation without linear compling
• The mode-dependent elements (MDEs) introduce linear mode mixing (coupling) 

and mode-dependent  

• Noise
• Chromatic dispersion
• Kerr Nonlinearity

• Linear mode coupling: (nearly-)Hermitian
• Mode-dependent loss or gain: non-Hermitian

Linear coupling arises from “imperfect” fibers and 
lead to the need for MIMO processing
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MIMO in Fiber Channel

Mode-dependent loss/gain and nonlinear effects 
degrade the efficiency of MIMO

• In single-mode fibers:  2x2 MIMO is done since 2005
• Up to about 20 symbols need to be processed simultaneously  
• Current speeeds are

a. 1 Tb/s (offline post-processing)
b. 400 Gb/s (real-time)

In space-division multiplexed (SDM) fibers: 

In single-mode fibers: 

• Up to 12x12 MIMO has been demonstrated 
• Up to 1000 symbols need to be processed simultaneously 
• Current speeds are a few Tb/s (offline post-processing)
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Schematic of Coherent MIMO-based Coherent Crosstalk 
Suppression for Space-Division Multiplexing (SDM)

• All guided modes of the SDM fiber are selectively launched
• All guided modes are linearly coupled during propagation in the SDM fiber
• All guided modes are simultaneously detected with coherent receivers
• Multiple-input multiple-output (MIMO) digital signal processing decouples the 

received signals to recover the transmitted signal

Represents a single spatial mode and a single polarization state

Crosstalk from spatial multiplexing can be nearly completely 
removed by MIMO digital signal processing
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6 x 6 coherent MIMO experiment
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Historical Capacity Evolution

Space-division multiplexing has already exceeded 
the nonlinear Shannon limit
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Summary and Outlook

The “fiber channel” is either rather simple or 
exceedingly complex depending on the 

propagation effects included

• Nonlinear Shannon capacity limit has been estimated
 ~100 Tb/s over 1000 km  100,000 fibers for 1019 bit/s 

• Space-division multiplexing is a promising technology 
to further increase capacity per fiber strand 

• In the absence of mode-dependent loss or gain, MIMO 
is about finding a unitary matrix 
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